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Abstract. In digital image processing for remote sensing there is often a need to 
interpolate an image. Examples occur in scale magnification, image registration, 
geometric correction, etc. On the other hand, this image can be subject to several 
sources of degradation and it would be interesting to compensate also for this 
degradation in the interpolation process. Therefore, this article addresses the 
problem of combining interpolation and restoration in a single operation, thereby 
reducing the computational effort. This is done by means of two-dimensional, 
separable, Finite Impulse Response (FIR) filters. The ideal low pass FIR filter for 
interpolation is modified to account for the restoration process. The Modified 
Inverse Filter (MIF) and the Wiener Filter (WF) are used for this purpose. The 
proposed methods are applied to the interpolation-restoration of Landsat-5 
Thematic Mapper data. The later process takes into account the degradation due 
to optics, detector and electronic filtering. A comparison with the Parametric 
Cubic Convolution (PCC) technique is made. The experimental results consist of 
interpolation-restoration processes of Landsat-5 Thematic Mapper images from 
30 m to 15 m (scale magnification) but they could also be generalized to include 
deblurring on more general interpolation problems, like geometric correction 

1. Introduction 
The resolution of images obtained by satellite sensors is degraded by sources, 

such as: optical diffraction, detector size and electronic filtering. As a consequence, 
the effective resolution is, in general, worse than the nominal resolution, that 
corresponds to the detector projection on the ground and does not take into 
consideration the sensor imperfections. 

Through resoration techniques, it is possible to improve image resolution up to a 
certain levei. This paper explores the idea of combining the restoration process with 
an interpolation process to generate images with a better resolution over a finer grid 
than the original sampling grid. Related works in this area include those of Seto et 
al. (1990), Malaret (1985), Kalman (1984), Wilson (1979), Dye (1975). 

The combined interpolation-restoration process is performed by means of two-
dimensional, separable, Finite Impulse Response (FIR) filters. The ideal low pass 
FIR filter for interpolation (Crochiere and Rabiner 1983) is modified to account for 
the restoration process. The proposed method is applied to the interpolation-
restoration of Landsat-5 Thematic Mapper (TM) data. 

2. The problem of image restoration 
The image restoration problem attempts to recover an image that has been 

degraded by the limited resolution of the sensor as well as by the presence of noise. 

0143-1161/93 $10.00 (2) 1993 Taylor & Francis Ltd 



2548 	 L. M. G. Fonseca et al. 	 Combined interpolation—restoration of Landsat images 	2549 

In sensors like the Multi-spectral Scanner (MSS) or the Thematic Mapper (TM), the 
image is obtained in digital form so there is a need to incorporate the sampling 
process in the model. A useful model that has been proposed for the recording 
process in such systems is given by 

	

gn=ff *h+nl•SA , 	 (1) 

where f represents the original scene, h is the point spread function (PSF) of the 
sensor, n is the additive noise. SA is the sampling function and gA  is the sampled 
image. 

In the Fourier domain this equation can be rewritten as 

GA (u)= -à E F(u—nu a)H(u—nu a)+N A (u) 
	

(2) 

where GA, F, H and NA are the Fourier transforms of ,  f, h and nA , respectively 
and Ax is the sampling period. 

The objective of image restoration is to design a filter P(u), periodic with period 
u,„ such that, when convolved with expression (1), the effect of H(u—n a) is cancelled, 
i.e., 

	

H(u)P(u)=1 uLu, 	 (3) 

O elsewhere 

where u, is the cut-off frequency of H. 
An obvious choice for P(u) is the inverse filter: 

P(u)=  H-(u) 	
(4) 

However, the inverse filter is unstable (Pratt 1978), (Rosenfeld and Kak 1982). 
The instability arises from the location of the zeroes of H(u). 

The Modified Inverse Filter (MIF), also called Transfer Function Compensation 
(TFC), approximates the inverse filter and at the same time attempts to control the 
problems associated with it. The proposed MIF is based on the work of (George and 
Smith 1962), (Sellner 1971) and (Arguello, Sellner and Stuller 1972). 

The idea is to choose a desired function D as the response of the system, that 
would alleviate the ill-conditioning effects. 

D = H • P 	 (5) 

The function D should have a better behaviour than the function H. A constant 
value for D yields the inverse filter. Once D is selected, P can be estimated: 

D(u)  

	

P(u)= H() 1"11` 	
(6) 

otherwise 

The selection of the desired function is discussed in §4. 
It may be noted that the Wiener filter has a similar form to (6) (Andrews and 

Hunt 1977) 

1 	[ 	IH(u)I 2  
P(u)= 

H(u) 	 (7) 
IH(u)I2 +

S(u)  

S f (u) 

One of the major difficulties in using the Wiener filter is that the power spectral 
densities of signal (Sf ) and noise (S„) are not always known a priori. Therefore, the 
ratio S„/Sf  is approximated empirically by a constant K m, (Gonzalez and Wintz 
1987). This type of filter given in (8) was also used in the study. 

1 

 [1< 
11-1(u)1 2  

Pw(u)= 
H(u) IH(u)I 2  +„, 	

(8) 

3. Analysis of the combined interpolation-restoration process 
In digital image processing, the technique that is used to estimate sample values 

of an image over a desired grid, from samples over the original grid, is known as 
resampling. Conventional techniques such as the Nearest-Neighbor, Bilinear and 
Parametric Cubic Convolution (PCC) have been used by the remote sensing 
community in order to perform this interpolation process (Bernstein 1975, Park and 
Schowengerdt 1983). On the other hand, the interpolation process can also be 
regarded from the digital signal processing point of view (Crochiere and Rabiner 
1983), (Câmara Neto and Mascarenhas 1983). Using this approach, interpolation 
can be efficiently performed by FIR filters. 

This FIR filter approximates the ideal interpolation filter, with transfer function 
given by 

1 	11.41--u, 

	

111(u)= [0 outside, 	 (9) 

where II, is the maximum frequency of the analogue signal. 
If the original signa! was subject to degradation by blur and corruption by 

additive noise, it is possible to combine the processes of interpolation and resto-
ration in a single filtering operation. 

Consider two different sampling grids A 1  and A,. The model for the combined 
process, illustrated in figure 1 below, by using the interpolation and restoration 
filters, can be written as 

	

1A2 = gAi * [qA2 * PA212 	 (10) 

where g and p are the interpolation and restoration filters, respectively. The 
subscripts A 1  and A2 are used to define the input and output sampling grids, 
respectively. 
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Figure I. Model for the combined process of restoration—interpolation. 
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The image formation model presented in figure 1 is the so-called continuo
discrete model (Andrews and Hunt 1977). This model is considered to be more 
realistic to represent the data acquisition process. On the other hand, onl y  
approximations of the continuous object are possible with digital processing. 
Therefore, the discrete-discrete model will be used in the following. In the absence of 
noise, the sampled and degraded signal, g, is related to the original signal over the 
same grid, by: 

9A1 = hAI *fAI 	 (11) 

By substituting (11) in (10) and by calculating the Discrete Fourier Transform, one 
obtains: 

FA  = FA1 HA.,  QA ,/P m = FA1H'm , 	 (12) 

where A" is the reciprocal of the sampling grid and 

Irm  = {Hm QmiPm 	 (13) 

From (13) it is observed that the restoration filter P ,. must compensate the 
effects of H m  and Q m  to obtain a good approximation of FA1 . By combining the 
interpolation (Q m ) and restoration (Pm ) processes into a single convolution 
operation, it is possible (Dye 1975) to reduce the computational cost of the solution. 

4. Design of the interpolation-restoration filter by FIR windowing techniques 
4.1. Specification of the MIF filter 

The design of the MIF filter requires knowledge of the transfer function of the 
sensors. The transfer function (or the point spread function) of the MSS and the TM 
have been experimentally determined by several authors for the entire imaging 
system (Anuta et al. 1984), Malaret et al. 1985), as well as the contribution of each 
component (optics, detector and filters) (Markham, 1985). In the present study, the 
transfer function for both MSS and TM was approximated as a separable Gaussian 
function, i.e., 

H(u)=exp(—Ku 2) 	 ( 14) 

where u is the normalized frequency with respect the sampling frequency u„ and K a 
function of the Equivalent Instantaneous Field of View (EIFOV): 

K= 4 1n(2)/d(EIFOV) 2 	 (15) 

The values of EIFOV used for MSS and TM are given in tables 1 and 2 
respectively, which were obtained by using the models proposed by Markham (1985) 
and Park et al. (1984). The desired response D(u) was chosen as 
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Table 2. EIFOV (in m) for TM. 

Bands direction 1-4 5.7 6 

x 41.6 40.5 168.9 
Y 45.4 45.4 179-0 

D(u)= 1 	O 	u„ 	 (16) 

0-5(1 +cos [n(u—u„,)1(u„—u)]) 

where u, is the system cut-off, and u„, the frequency for which the MTF of the 
imaging system is 0.5. 

Figure 2 below displays the desired response and the approximated gaussian 
model for the MTF of the TM sensor (Bands 1-4). 

The design of the separable digital filter was accomplished through the window-
ing technique. Different window shapes (Shlien, Cosine, Hann and Kaiser) were 
tested. For ali the window shapes the transition bandwidth was increased due to the 
convolution operation in the frequency domain, corresponding to the multiplication 
of the window in the spatial domain (Oppenheim and Schafer 1975). There are very 
little differences in the desired frequency response D(u) obtained through different 
window shapes (for N= 13), as shown in figure 3. Moreover, the subjective 
differences between interpolated-restored images with different window shapes were 
insignificant. 

Table 1. EIFOV (in m) for MSS. 	 0.0 	0.1 	 0.2 	0.3 	0.4 	0.5 

Bands direction 1 -4 

x 86.21 
Y 121.47 
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Figure 2. Desired response and the approximated Gaussian model for the MTF of the TM 
sensor. —, system; ----, desired. 
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Figure 3. Effect of truncation (N =13) on the desired function for different windows. 
Shlien; 	Cosine; 	Hann; 	Kaiser. 

One way to evaluate the effect of truncating the impulse response of the filter 
through a window is to compare the desired function for several truncating sizes. 
Figure 4 displays curves of the desired function obtained for truncating sizes equal 
to 13, 11, 9, 7 and 5, with the Hann window. 

It can be seen that the truncation of the filter impulse response by windowing 
causes an attenuation of the desired function that increases as the filter size 
decreases. This is more evident for N <9. This was verified through experiments, 
which showed that images that were processed with filters with size down to 9 by 9 
did not display significant differences. For a 256 by 256 region of the TM image with 
small details, histograms of the difference between processed images with filter sizes 
13, 11 and 9 (Hann window) were computed. More than 92 per cent of the pixels had 
grey leveis between -2 and +2. Therefore, an interpolation-restoration filter with 
N =9 is sufficient to generate images with good visual quality, since the use of longer 
filters increases the computational cost without a significant improvement. 

4.2. Design of the Wiener filter 
The Wiener filter was implemented in its approximate form, where the noise-to-

signal ratio S„/Sf  is substituted by a constant (8). Figure 5 displays the responses of 
the Wiener filter (K= 0-1) and MIF (u= 0.36) without truncation. It can be 
observed that the Wiener filter attenuates the response in the region where the 
signal-to-noise ratio is high, that is, in the neighbourhood of u= O. The use of a 
smaller K in order to alleviate this problem implies the increase of the response 
near the Nyquist frequency and a noisy image is obtained. 
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4.3. Some implementation issues 

Crochiere and Rabiner (1983) present the basic concepts of periodically shift 
variant digital systems to modify the sampling rate of a sequence. In this section, we 
examine some aspects of the implementation of a FIR shift variant filter structure 
that are used in the design of a restoration filter, for interpolation-decimation by a 
factor M/L. 

Once the frequency response of the restoration filter P is specified, the filter 
coefficients are obtained by the Inverse Fourier Transform of P, given by 

1 f“. 	. 
=— 	P(u)e'"du, 	 (17) us  

where us  is the sampling frequency. 
The coefficients of the FIR restoration filter are obtained over a sampling rate 

which is L times greater than the sampling rate of the input sequence. If the size of 
the filter is N (odd), the number of filter coefficients, N, is given by 

Ne=(N - 1)L+1 	 (18) 
In actual implementation, only half of this number of coefficients are generated, 

due to the filter symmetry. 
The integral given by Expression (17) is numerically calculated, through Simp-

son's rule (Rice 1983). 
The filter coefficients are normalized. One must assure that 

(19) 
_ 

in order that the image average value should not be changed. As there are L sets of 
coefficients for the digital filter, for each set the normalization is made such that the 
validity of expression (19) is assured. It should be observed that this type of 
implementation of the restoration-interpolation of the FIR filter is equivalent to a 
polyphase network (Crochiere and Rabiner 1983). 

The programme for the computation of the coefficients of the digital restoration-
interpolation filter of Landsat images was developed in C language on a IBM-PC 
compatible microcomputer. 

5. Experimental results 
The 512 by 512 TM image that was used as a test in the study covers the Galeão 

International Airport, in Rio de Janeiro, Brazil, and was taken on 8 August 1987. 
The original image has only skew geometrical correction. 

The images (Bands 1-4, 5 and 7) were resampled over a 15 m spaced grid through 
the restoration-interpolation method and the interpolation by PCC (Parametric 
Cubic Convolution) with = —0.5 (Park and Schowengerdt, 1983). In order to 
evaluate the restored images, these images were compared to the images that were 
interpolated by PCC. 

5.1. Visual quality 

Figures 6-8 correspond to the sequence of TM images (Band 3) that display a 
comparison between the interpolated and restored images (512 by 512 pixels). The 
differences between figures 7 and 8 are mainly on the edges or objects that exhibit 

Figure 6. TM original image (512 by 512)—Band-3, pixel =30 m. A region of 256 by 256 
pixels was taken for resampling. 

more contrast with respect to surrounding areas. Linear features appear more 
enhanced in the restored image. 

The parametric cubic convolution process attenuates the high frequency compo-
nents of the image and, therefore, a more blurred image is obtained. On the other 
hand, the restoration process amplifies the high frequency components of the image 
and an image with sharper transitions is obtained. 

Figure 7. Interpolated image-parametric cubic convolution pixel = 15 m. 
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Figure 8. Restored-interpolated image—pixel =15 m. 

One can also observe that street delineation is better in the restored image, 
although the enhancement of the Moiré effect (aliasing) is also more evident in the 
restored image. This effect is clear on the edges of the airport runways that, instead 
of being linear, appear in a sawtooth form. In the interpolated image this effect also 
appears, but in a less pronounced form. The greater Moiré effect in the restored 
image is due to the fact that the restoring filter amplifies the high frequencies, that 
were folded over low frequency bands (spectrum overlap) in the sampling process. 

Figure 10. Difference image (Band 3) with contrast stretch. 

One experiment was also performed by applying a 3 by 3 high-pass, separable 
conventional filter after the parametric cubic convolution interpolation. 

This 3 by 3 filter has the following form: 
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Figure 11. Rano-image (restored/cubie convolution) of the Fourier Transform. 
Figure 9. High-Pass filtering of PCC. 



The corresponding one-dimensional Discrete Fourier Transform is given by: 

H(u)= 3 — 2 cos 27ru 1/2 (21) 

Figure 9 displays the result. ft can be observed that a greater detail rendition is 
obtained, as compared to figure 8, at the expense of more aliasing and noise 
amplification (particularly over water), as well as additional computational effort. 

5.2. Difference between images 
The difference image was obtained through a pixel-by-pixel subtraction (figure 7 

minus figure 8) and taking the absolute value of this difference. The largest 
differences occur on the edges between high contrast areas (airport runways, for 
example), as it can be observed through figure 10. 

The cubic convolution process presents a blurring effect: the low pixel values 
corresponding to the dark side of an object are slightly increased and the high tones, 
corresponding to the bright side of the border, are reduced. The restoration process 
decreases the smoothing effect, produces sharper transitions on the edges and 
increases the overall sharpness of the image. These results are in accordance with the 
visual analysis of the original images. 

5.3. Fourier analysis 
A Fast Fourier Transform routine was used to compute the two-dimensional 

transform of a 256 by 256 pixel sub-image of the resampled image (Band 3) by both 
methods. The ratio between the logarithms of the absolute values of the transformed 
restored and interpolated images was computed. 

Figure 11 displays the ratio-image (Band 3) of the selected image. 

Grey r <0.95 	(high frequencies) 

Dark 0.95 r 105 (low frequencies) 

White r>1-05 	(middle frequencies) 

One can observe that the frequency content of the images using both resampling 
methods are approximately equal in the low frequencies region (dark region), as it 
was expected. In the middle frequencies, the ratio is greater than 1-05 for a large 
band of the spectrum (white region), since the frequency response of the restoration 
filter is greater than the PCC filter in the range ul 0.5; in this region the frequency 
contents of the restored image is greater than that of the interpolated image. The 
grey band that appears dose to the image boundary is a consequence of the fact that 
the PCC filter has a significant response beyond the cut-off system frequency, 
uc = 0•5. These components are responsible for the spectrum amplification of the 
interpolated image, in a region where it should have been eliminated by the 
interpolation filter in the ideal situation. 

5.4. Restoration-interpolation through the Wiener filter 
Figure 12 displays the restored-interpolated image (grid spacing = 15 m) by using 

the Wiener filter technique, according to (8). The choice of the parameter K„, was 
dictated by a compromise: small values of K„, imply an approximation to the inverse 
filter, with increase in the noise content of the restored image; large values of K„, 
imply an attenuation of the low frequency components of the image. A value of K„, 
equal to 0.1 was chosen after some experimentation and, as can be observed from 

Figure 12. Restored-interpolated image by the Wiener Filter—pixel =15 m. 

figure 12, the corresponding visual results are similar to those of the Modified 
Inverse Filter. 

5.5. Restoration without interpolation 
Figure 13 shows the result of the restoration of figure 6 by using the Modified 

Inverse Filter without any interpolation. By comparing both figures, it is possible to 
notice some improvements in detail rendition, as in street delineation, for example. 

Figure 13. Restored image by MIF without interpolation—pixe1=30m. 
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Figure 14. Response of the TM (Bands 1-4) modified by the MIF-Hann Window, N=11. 
Before processing; ----, Modified. 

One can observe that the visual improvements are more evident when the restoration 
is combined with the interpolation process. 

6. Concluding remarks 
This work presented a restoration technique that is combined with the resam-

pling process in order to interpolate Landsat satellite images. This was accomplished 
through the design of a Finite Impulse Response (FIR) filter that has input and 
output signals with different sampling rates. 

An improvement of the spatial resolution of the sensor was obtained through the 
restoration process. By using the curves of the modified transfer function obtained 
from (13), (see figure 14) one obtains the EIFOV of the processed system. These 
values were determined as approximately 365m and 380m for Bands 1-4 and 
36.3 m and 38-0 m for Bands 5 and 7, on the x and y directions, respectively. These 
results are better than those presented in table 2, as a result of the restoration 
process. 
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